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Background

Multigrading

The polynomial ring S = k[x1, . . . , xn] is Nn-graded by

mdeg(xi) = (0, . . . , 0, 1i , 0, . . . , 0)

where mdeg stands for multidegree.

We say that xa1
1 · · · xan

n has Nn-degree (a1, . . . , an) or multidegree xa1
1 . . . xan

n .
Any two monomials have a different multidegree.
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Background

Definition

An ideal M ⊂ S is a monomial ideal if it is generated by monomials.
r (x2, xy , y3) ⊂ k[x , y ]
r (x2y , xz , xyz , yz) ⊂ k[x , y , z ]

Monomials are the only graded ideals with respect to multidegree.

Definition

S(xa1
1 · · · xan

n ) = S with 1 in multidegree (xa1
1 · · · xan

n )
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Motivation

Relations on (x2, y3)

r y3x2 − x2y3

Relations on (x2, xy , y3)
r yx2 − xxy
r y2xy − xy3
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Background

Definition

An exterior algebra, E , is a k-algebra generated by e1, . . . , em with multiplication
denoted ∧, with relations {

e1 ∧ ej = −ej ∧ ei

ei ∧ ei = 0

r A k-vector space basis of E is ej1 ∧ . . . eji
r E = ⊕n

i−0 Ei

r dim(Ei) =
(n

i
)
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Background

Definition

The Koszul Complex K on a set of polynomials f1, . . . , fm is built from an exterior
algebra E over k on basis elements e1 . . . em.

The complex K = S ⊗k E is

0 → S ⊗k Em → S ⊗k Em−1 → . . . → S ⊗k E1 → S ⊗k E0 → 0

as an S-module with differential

d(ej1 ∧ . . . eji ) =
∑

1≤p≤i
(−1)p+1fjp (ej1 ∧ . . . ∧ êjp ∧ . . . ∧ eji )

r K (f ) is exact if and only if f1, . . . , fm form a regular sequence.



Background

Definition

The Koszul Complex K on a set of polynomials f1, . . . , fm is built from an exterior
algebra E over k on basis elements e1 . . . em. The complex K = S ⊗k E is

0 → S ⊗k Em → S ⊗k Em−1 → . . . → S ⊗k E1 → S ⊗k E0 → 0

as an S-module with differential

d(ej1 ∧ . . . eji ) =
∑

1≤p≤i
(−1)p+1fjp (ej1 ∧ . . . ∧ êjp ∧ . . . ∧ eji )
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Taylor’s Resolution

Construction

Let M be a monomial ideal generated my monomials m1, . . . , mq. Let E be the
exterior algebra over k on basis elements e1, . . . , eq. The complex TM = S ⊗k E
as an S-module equipped with the differential

d(ej1 ∧ . . . ∧ eji ) =
∑

1≤p≤i
(−1)p−1 lcm(mj1 , . . . mji )

lcm(mj1 , . . . m̂jp , . . . , mji )
ej1 ∧ . . . ∧ êjp ∧ . . . ∧ eji



Taylor’s Resolution

Example

Let S = k[x , y ] and M = (x2, xy , y3). Let’s resolve S/M over S !

Let e1, e2, e3 be standard basis elements in homological degree 1.

S(x2)
⊕

S(xy)
⊕

S(y3)

[
x2 xy y3

]
−−−−−−−−→ S → 0
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Taylor’s Resolution
In homological degree 2, we have standard basis e1 ∧ e2, e1 ∧ e3, e2 ∧ e3.

d(e1 ∧ e2) = lcm(x2, xy)
lcm(xy) e2 − lcm(x2, xy)

lcm(x2) e1 = xe2 − ye1

d(e1 ∧ e3) = lcm(x2, y3)
lcm(x2) e3 − lcm(x2, y3)

lcm(y3) e1 = y3e3 − x2e1

d(e2 ∧ e3) = lcm(xy , y3)
lcm(y3) e3 − lcm(xy , y3)

lcm(xy) e2 = xe3 − y2e2

S(x2y)
⊕

S(x2y3)
⊕

S(xy3)

−y −y3 0
x 0 −y2

0 x2 x


−−−−−−−−−−−−→

S(x2)
⊕

S(y3)
⊕

S(xy)

[
x2 xy y3

]
−−−−−−−−→ S → 0



Taylor’s Resolution

In homological degree 3, we have standard basis e1 ∧ e2 ∧ e3.

0 −→ S(x2y3)

 y2

−1
x


−−−−→

S(x2y)
⊕

S(x2y3)
⊕

S(xy3)

−y −y3 0
x 0 −y2

0 x2 x


−−−−−−−−−−−−→

S(x2)
⊕

S(xy)
⊕

S(y3)

[
x2 xy y3

]
−−−−−−−−→ S → 0

This is not minimal.
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Taylor’s Resolution

Pro’s Con’s

•simple structure •highly non minimal

•very similar to the Koszul Complex

•upper bound on the sum of the multidegrees of
any free module in the resolution

≤ deg(m1) + . . . + deg(mq) − q

•upper bound on Betti numbers

βi ≤
(q

i
)



Mapping Cones

Definition

If U, U′ are resolutions for S/I and S/J and we have a map S/I → S/J , then
there exists φ : U → U′, called the comparison map.

Goal: Given a short exact
sequence

0 → S/I → S/J → S/L → 0

and a free resolution U for S/I and U′; construct free resolution for S/L
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Mapping Cones

Definition

The mapping cone of φ is the complex W with differential ∂ defined as follows:

Wi = Ui−1 ⊕ U ′
i as a module

∂ |Ui−1 = −d + φ : Ui−1 → Ui−2 ⊕ U ′
i−1

∂ |U′
i

= d ′ : U ′
i → U ′

i−1

Wi
∂i //Wi−1

U ′
i

d ′
i // U ′

i−1

⊕ ⊕
Ui−1

φ
55

−di−1
// Ui−2



Mapping Cones

Construction

Let M be an ideal minimally generated by monomials m1, . . . , mr . Set Mi =
(m1, . . . mi) for 1 ≤ i ≤ r . For each i ≥ 1, we have

0 → S/(Mi : mi+1)(mi+1) mi+1−−−→ S/Mi −→ S/Mi+1 → 0.

Given:
r multigraded free resolution Fi of S/Mi

r multigraded free resolution Gi of S/(Mi : mi+1)
Construct:
r multigraded free resolution Fi+1 of S/Mi+1.

We say the multigraded free resolution Fq of S/M obtained in this way, is obtained
by iterated mapping cones.
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Mapping Cones

Example

Let S = k[x , y ] and M = (x2, y3, xy). Let’s resolve S/M over S via iterated
mapping cones!

We have
r M1 = (x2)
r M2 = (x2, y3)
r M3 = M = (x2, y3, xy)
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Mapping Cones

The second short exact sequence is

0 → S/(M2 : xy) = S/(x , y2) xy−−−−→ S/(x2, y3) → S/M → 0.

Minimal resolution of S/(x , y2)

0 → S(x2y3)

[
y2

−x

]
−−−−→ S(x2y) ⊕ S(xy3)

[
x y2

]
−−−−−→ S(xy) → S

(x , y2)(xy) → 0

Minimal resolution of S/(x2, y3)

0 → S(x2y3)

[
y3

−x2

]
−−−−−→ S(x2) ⊕ S(y3)

[
x2 y3

]
−−−−−−→ S(xy) → S

(x2, y3) → 0
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Mapping Cones

0 S(x2y3) S(x2y) ⊕ S(xy3) S(xy) S
(x ,y2)(xy) 0

0 S(x2y3) S(x2) ⊕ S(y3) S(xy) S
(x2,y3) 0

[
y2

−x

] [
x y2

]

[
y3

−x2

] [
x2 y3

]



Mapping Cones

0 S(x2y3) S(x2y) ⊕ S(xy3) S(xy) S
(x ,y2)(xy) 0

0 S(x2y3) S(x2) ⊕ S(y3) S S
(x2,y3) 0

1φ

[
y2

−x

]

[
y 0
0 x

]
φ

[
x y2

]

·xyφ ·xyφ[
y2

−x

] [
x2 y3

]



Mapping Cones

U ′
2 U ′

1 U ′
0

0 S(x2y3) S(x2y) ⊕ S(xy3) S(xy) S
(x ,y2)(xy) 0

0 S(x2y3) S(x2) ⊕ S(y3) S S
(x2,y3)(xy) 0

U2 U1 U0

1φ

[
y2

−x

]

[
y 0
0 x

]
φ

[
x y2

]

·xyφ ·xyφ[
y2

−x

] [
x2 y3

]



Mapping Cones

0 → S(x2y3)

 1
y2

−x


−−−−→

S(x2y3)
⊕

S(x2y)
⊕

S(xy2)

 y3 y 0
−x2 0 x

0 −x −y2


−−−−−−−−−−−−→

S(x2)
⊕

S(y3)
⊕

S(xy)

[
x2 y3 xy

]
−−−−−−−−→ S → S

(x2, xy , y3)



Mapping Cones

0 → S(x2y3)

 1
y2

−x


−−−−→

S(x2y3)
⊕

S(x2y)
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 y3 y 0
−x2 0 x

0 −x −y2
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x2 y3 xy
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Eliahou-Kevaire Resolutions

Definition

A monomial ideal M ⊆ S = k[x1, . . . , xn]is Borel if it satisies the Borel property :
if i < j , g a monomial such that gxj ∈ M, then gxi ∈ M.

r (x , y , z)
r (x2, xy , y3)
r (x2, xy , xz)
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Eliahou-Kevaire Resolutions

Definition

r max(m)=max{i | xi divides m}
r min(m)=min{i | xi divides m}

Every monomial w of Borel ideal M admits a unique decompositionw = uv such
that u is a minimal monomial generator of M and max(u) ≤min(v).
Denote beginning of w = b(w) = u and end of w = e(w) = v .
r x2yz3 ∈ (x2, z)
r x2yz3 = (x2)(yz3)
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Eliahou-Kevaire Resolutions

Construction

Let M be a Borel ideal with minimal monomial generators m1, . . . , mr . For each
mi and for each sequence 1 ≤ ji < . . . < jp ≤ max(mi) of strictly increasing nat-
ural numbers we conosider the free S-module S(mixj1 · · · xjp ) with one generator,
denoted (mi ; j1, . . . , jp) in homological degree p +1 and multidegree mixj1 · · · xjp .

Definition

The Eliahou-Kevaire resolution EM of S/M has basis

B = {1} ∪ {(mi ; j1, . . . , jp) | 1 ≤ ji < . . . < jp ≤ max(mi), 1 ≤ i ≤ r}



Eliahou-Kevaire Resolutions

Definition

The Eliahou-Kevaire resolution EM of S/M has basis

B = {1} ∪ {(mi ; j1, . . . , jp) | 1 ≤ ji < . . . < jp ≤ max(mi), 1 ≤ i ≤ r}

1 is a basis of S in homological degree 0
(m1; ∅) . . . (mr ; ∅) is the basis in homological degree 1



Eliahou-Kevaire Resolutions

Define maps

∂(mi ; j1, . . . , jp) =
p∑

q=1
(−1)qxjq (mi ; j1, . . . , ĵq . . . , jp)

µ(mi ; j1, . . . , jp) =
p∑

q=1
(−1)q mixjq

b(mixjq )(b(mixjq ); j1, . . . , ĵq . . . , jp)

The differential in EM is d = ∂ − µ
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Eliahou-Kevaire Resolutions

Example

Let S = k[x , y ] and M = (x2, y3, xy). Let’s resolve S/M over S using the
Eloiahou-Kevaire Resolution!

Basis Homological degree
1 0

(x2; ∅), (xy ; ∅), (y3; ∅) 1
(xy ; 1), (y3; 1) 2
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Eliahou-Kevaire Resolutions

S(x2)
⊕

S(xy)
⊕

S(y3)

S

[
x2 xy y3

]

∂(xy ; 1) = (−1)1x · (xy ; ∅)

µ(xy ; 1) = (−1)1 xy · x
b(xy · x)(b(xy · x); ∅) = −y · (x2; ∅)

∂(y3; 1) = (−1)1x · (y3; ∅)

µ(y3; 1) = (−1)1 y3 · x
b(y3 · x)(b(y3 · x); ∅) = −y2 · (xy ; ∅)



Eliahou-Kevaire Resolutions
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⊕

S(y3)

S

[
x2 xy y3

]
∂(xy ; 1) = (−1)1x · (xy ; ∅)
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b(xy · x)(b(xy · x); ∅) = −y · (x2; ∅)
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Eliahou-Kevaire Resolutions

0
S(x2y)

⊕
S(xy3)

S(x2)
⊕

S(xy)
⊕

S(y3)

S

 y 0
−x y2

0 −x

 [
x2 xy y3

]



Eliahou-Kevaire Resolutions

Pro’s Con’s

•always minimal •only works with Borel ideals

•it’s an iterated mapping cone

•know ALOT of numerical invariants



Eliahou-Kevaire Resolution

•height(M) = max{j | a power of xj inM}

•reg(M)=highest degree of a monomial generator of M

•pd(M) = max{max(mi) − 1 | 1 ≤ i ≤ r}

•bS
p (M) =

r∑
i=1

(
max(mi) − 1

p

)

•bS
p,p+q(M) =

r∑
deg(mi )=q

1≤i≤r

(
max(mi) − 1

p

)



Comparing Resolutions

0 → S(x2y3)

 y2

−1
x


−−−−→

S(x2y)
⊕

S(x2y3)
⊕

S(xy3)

−y −y3 0
x 0 −y2

0 x2 x


−−−−−−−−−−−−→

S(x2)
⊕

S(y3)
⊕

S(xy)

[
x2 xy y3

]
−−−−−−−−→ S

We can prune the above Taylor Resolution to get...
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x 0 −y2

0 x2 x
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S(y3)
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S(xy)

[
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−−−−−−−−→ S

We can prune the above Taylor Resolution to get...



Comparing Resolutions

0 S(x2y3) S(x2y3)

⊕ ⊕

0
S(x2y)

⊕
S(xy3)

S(x2)
⊕

S(xy)
⊕

S(y3)

S

[
−1
]

 y 0
−x y2

0 −x

 [
x2 xy y3

]

The Eliahou-Kevaire Resolution as a minimal resolution of S/M direct sum with some
extra bits.


