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Multigrading

The polynomial ring S = k[x1, ..., xp] is N"-graded by
mdeg(x;) = (0,...,0,1;,0,...,0)

where mdeg stands for multidegree.

We say that x;* - - - x27 has N"-degree (ay, ..., ap) or multidegree x;* ... x32".
Any two monomials have a different multidegree.
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An ideal M C S is a monomial ideal if it is generated by monomials.
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v (x%y,xz,xyz,yz) C k[x,y, 2]
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Background

Definition

An ideal M C S is a monomial ideal if it is generated by monomials.

v (X%, xy,y%) C klx,y]
v (x%y,xz,xyz,yz) C k[x,y, 2]

Monomials are the only graded ideals with respect to multidegree.

Definition

S(x{* -+ - x2") = S with 1 in multidegree (x;* - -+ x2)
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Relations on (x2, y3)
w k2 = x2y3
Relations on (x2,xy,y3)




Background

Relations on (x2, y3)
v 1332 — x23
Relations on (x2, xy, y3)
A4 yx2 — XXy
v y2xy —xy?
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Background

An exterior algebra, E, is a k-algebra generated by ey, . . ., e, with multiplication
denoted A, with relations

e1Ne =—¢e Ne€j
eiNe =0

¥ A k-vector space basis of E is e; A ...¢;
v E=@i E
v dim(E;) = (")

I
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Background

The Koszul Complex K on a set of polynomials fi, . .., fy, is built from an exterior
algebra E over k on basis elements e; ...e,. The complex K=S® E is

0> SRUEn—>SQEn—1— ... 5 SQE1 = SQ Eg — 0
as an S-module with differential

d(ej1 AL ej,.) = Z (—1)p+lﬂp(ej1 VAN e}P FARAAN ej,.)
1<p<i

¥ K(f) is exact if and only if f1,. .., f, form a regular sequence.




Taylor's Resolution

Let M be a monomial ideal generated my monomials mq, ..., m,. Let E be the
exterior algebra over k on basis elements e1,...,e;. The complex Ty = S®y E
as an S-module equipped with the differential

lem(mj, ... mj)

d(ejl/\.../\ej,.): Z (_1)p—1

1<p<i

cmlm; y ) J1 ep e’
| ( Jl,““”’P"“?’”,‘) J, j




Taylor's Resolution

Let S = k[x,y] and M = (x?,xy, y3). Let’s resolve S/M over S !
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Let e1, e, e3 be standard basis elements in homological degree 1.
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Taylor's Resolution

In homological degree 2, we have standard basis e; A e, €1 A €3, e A e3.

lem(x?, xy lem(x?, xy
dler/e) = Icr(n(XY) ! 27 Icr(n(xz) )el e
lem(x?, y3 lem(x?, y3
d(e1 VAN 63) = Icr(n(xz) )63 — Icr(n(y3) )61 = y3e3 — X261
lem(xy, y3 lem(xy, y3
d(62 N 63) = ICr(n(y3) )63 - Icr(n(xy) )62 = X€3 — y262
3
-y —y> 0
S(x2y) x 0 —y2 S(x?)
O 0 x> x 5 {Xz Xy y3}
S(x2%y?) S(y3) ——=S—=0
S S

S(xy?) S(xy)



Taylor's Resolution

In homological degree 3, we have standard basis e; A ex A e3.



Taylor's Resolution

In homological degree 3, we have standard basis e; A ex A e3.

2 3
y -y —y> 0
1 S(x2y) x 0 —y? S(x?)
b%s S x> x S
0 — S(x%y%) =——= S(x%?) > S(xy)
S S



Taylor's Resolution

In homological degree 3, we have standard basis e; A ex A e3.

2 v 3 0
TUoseen | o S| se)
X 8% X2 X N2
0 — S(x%y%) =——= S(x%?) > S(xy)
S S
S(xy?) S(y*)

This is not minimal.



Taylor's Resolution

Pro's

Con's

= simple structure
= very similar to the Koszul Complex

= upper bound on the sum of the multidegrees of
any free module in the resolution

< deg(my)+ ...+ deg(my) — q
= upper bound on Betti numbers

i< ()

= highly non minimal



Mapping Cones

If U, U’ are resolutions for S// and S/J and we have a map S/I — S/J, then
there exists ¢ : U — U’, called the comparison map.




Mapping Cones

If U, U’ are resolutions for S// and S/J and we have a map S/I — S/J, then
there exists ¢ : U — U’, called the comparison map. Goal: Given a short exact

sequence
0—+S/I—-S5/J—S/L—=0

and a free resolution U for S// and U’; construct free resolution for S/L




Mapping Cones
The mapping cone of ¢ is the complex W with differential 0 defined as follows:

W; = U;_1 @ U! as a module
Oluy_,=—d+e:U_1—> U_2® U:{—l
8 |UI/ = dl . UII—> U,{fl

0i
W; Wi_1
L,
U———=Ui,




Mapping Cones

Let M be an ideal minimally generated by monomials my,..., m,. Set M; =
(m1,...m;) for 1 <i<r. Foreachi>1, we have

0— S/(M, : m,-+1)(m,-+1) ﬂ) S/M, — S/M,'_H — 0.




Mapping Cones

Let M be an ideal minimally generated by monomials my,..., m,. Set M; =
(mi1,...m;) for 1 < i< r. Foreachi>1, we have

0— 5/(M, : m,-+1)(m,-+1) M S/M, — S/M,'_H — 0.

Given:

¥ multigraded free resolution F; of S/M;

¥ multigraded free resolution G; of S/(M; : mj11)
Construct:

¥ multigraded free resolution F;11 of S/Mi;1.

We say the multigraded free resolution Fq of S/M obtained in this way, is obtained
by iterated mapping cones.
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Mapping Cones

Let S = k[x,y] and M = (x2,y3,xy). Let's resolve S/M over S via iterated
mapping cones!

We have
v M = (x?)
v My =(x?y3)
» M3 =M= (x?y3 xy)



Mapping Cones

The second short exact sequence is

0—S/(My:xy)=S5/(x,y?) == S/(x%,y%) = S/M = 0.
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Mapping Cones
The second short exact sequence is
0—S/(My:xy)=S5/(x,y?) == S/(x%,y%) = S/M = 0.
Minimal resolution of S/(x,y?)

% v ;

0= S(x*y®) == S(x*y) & S(xy*) ——= S(xy) —

Minimal resolution of S/(x2, y3)

)

<y
0= S(x%y%) =—= S(x®) @ S(»?)

S



Mapping Cones

o -

0 —— S(*y*) == S(x%y) ® S(x*) —— S(xy) w7y ()

] o] 5

0 —— 5(X2y3) —_— S(Xz) @5()/3) I S(XY) (x2,3)




Mapping Cones

4

0 —— S(x%y3) —= S(x%y) @ S(xy?) S(xy)
el1 ¢ ly 0] @|-xy
0 x
0 —— S(x2y?) l () & S(v?) i

o (%)

(x%,y3)



Mapping Cones

Uy Uy Uo
y2
S 5
0 —— —= S(x%y) @ S(xy’) —— S(xy) (X_yz)(XY)
P11 P |f05 j @ |-xy @ |-xy
y2
2.3 LX] 2 3 [X2 yﬂ s
— S(x7y’) —= S(x*) © S(y°) S (Xz’y3)(XY)

Us U1 Uo



Mapping Cones

0— —_—




Mapping Cones

1 y: oy 0
[y2 ] S(x%y?) { 2 0 x S(x?)
_ G5) oy 2 @ 2,3
05038 L spey) B2 TNV g0 e s >
S(xy?) S(xy)
2 3
y -y -y 0
{1] S(x2y) { x 0 —y? S(x?)
X © 0 x2 «x N2 x? Xy 3
0 — S(x%y%) —= S(x%?) S(xy) MS%O
&b QP



Eliahou-Kevaire Resolutions

A monomial ideal M C S = k[x, ..., x,]is Borel if it satisies the Borel property:
if i <j, g a monomial such that gx; € M, then gx; € M.




Eliahou-Kevaire Resolutions

A monomial ideal M C S = k[x, ..., x,]is Borel if it satisies the Borel property:
if i <j, g a monomial such that gx; € M, then gx; € M.

v (x,y,2)

v (<, xv.y%)

v (x?, xy, xz)




Eliahou-Kevaire Resolutions

¥ max(m)=max{i | x; divides m}

® min(m)=min{/i | x; divides m}




Eliahou-Kevaire Resolutions

¥ max(m)=max{i | x; divides m}
® min(m)=min{/i | x; divides m}

Every monomial w of Borel ideal M admits a unique decompositionw = uv such
that v is a minimal monomial generator of M and max(u) <min(v).




Eliahou-Kevaire Resolutions

¥ max(m)=max{i | x; divides m}

® min(m)=min{i | x; divides m}
Every monomial w of Borel ideal M admits a unique decompositionw = uv such
that v is a minimal monomial generator of M and max(u) <min(v).
Denote beginning of w = b(w) = u and end of w = e(w) = v.

v x2yz% € (x2,2)

v 22 = () (y2)




Eliahou-Kevaire Resolutions

Let M be a Borel ideal with minimal monomial generators my, ..., m,. For each
mj and for each sequence 1 < j; < ... < j, < max(m;) of strictly increasing nat-
ural numbers we conosider the free S-module S(m;x;, - - - x;,) with one generator,

denoted (mi; j1, .. .,jp) in homological degree p+-1 and multidegree m;x;, - - - x;,.

The Eliahou-Kevaire resolution Ey; of S/M has basis

B=A{1}U{(mj;j1,.--Jp) | 1 <ji<...<jp <max(m;),1<i<r}




Eliahou-Kevaire Resolutions

The Eliahou-Kevaire resolution Ey; of S/M has basis

B=A{1}U{(mj;j1,.-.Jp) | 1 <ji<...<jp <max(m;),1<i<r}

1 is a basis of S in homological degree 0

(my1;0)...(m,;0) is the basis in homological degree 1




Eliahou-Kevaire Resolutions

Define maps

p
o(mj; ji, .-, jp) = Z qu (misjis-odg- -

) P mix;
p(miiji, - odp) = > (- i

= (m Xjq

I

)(b(miqu);jla -+ +5)q

7.jP)

s Jp)



Eliahou-Kevaire Resolutions

Define maps

p
o(mj; ji, .-, jp) = Z =1)9%, (mi;j1, -5 Jg - - -

) d mix;
p(miiju, o) = 3 (= >

= (m Xjq

)(b(miqu);jl, e

7.jP)

yJg - -

++Jp)

[ The differential in Epyis d =0 —




Eliahou-Kevaire Resolutions

Let S = k[x,y] and M = (x?,y3,xy). Let's resolve S/M over S using the
Eloiahou-Kevaire Resolution!




Eliahou-Kevaire Resolutions

Let S = k[x,y] and M = (x?,y3,xy). Let's resolve S/M over S using the
Eloiahou-Kevaire Resolution!

Basis ‘ Homological degree
1 0
(x%:0). (v 0), (v*: 0) 1

(xy:1),(y* 1) 2
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Eliahou-Kevaire Resolutions




Eliahou-Kevaire Resolutions

Pro's Con's

= always minimal = only works with Borel ideals

= it's an iterated mapping cone

= know ALOT of numerical invariants



Eliahou-Kevaire Resolution

= height(M) = max{; | a power of x; inM}
= reg(M)=highest degree of a monomial generator of M

= pd(M) = max{max(m;) =11 <i<r}

(M) = i (max(m,-) — 1)

i=1 P

. b§7p+q(M) _ zr: <max(m;) — 1)

deg(m;)=q P
1<i<r



Comparing Resolutions

-y =y
x 0
0 x2




Comparing Resolutions

2 v 3 0
{1 S(x%y) Xy 8/ )2 S(x?)
X © 0 x2 «x D [X2 Xy )/3}
0 — S(x%y%) —=— S(x%?) S(y}) ——=S
® ®
S(xy?) 5(xy)

We can prune the above Taylor Resolution to get...



Comparing Resolutions

2] S
—yx ;2 S(X2)
S(X2y) 0 —x D x2 xy y3}
0O— @ —— S(xy) ——S
S(xy3) @
S(y®)

The Eliahou-Kevaire Resolution as a minimal resolution of S/M direct sum with some
extra bits.



