A New Explicit Finite Free Resolution of Ideals Generated by Monomials in an R-sequence

Juliann Geraci
June 28, 2021
University of Nebraska - Lincoln

Motivation

- How can we describe the structure of a module?

Motivation

- How can we describe the structure of a module?
- Generators

Motivation

- How can we describe the structure of a module?
- Generators
- Relations on the generators

Motivation

- How can we describe the structure of a module?
- Generators
- Relations on the generators
- Relations on these relations on the generators

Motivation

- How can we describe the structure of a module?
- Generators
- Relations on the generators
- Relations on these relations on the generators

Motivation

Enter, Hilbert

Motivation

Enter, Hilbert

- Associate a free resolution to a finitely generated module

Motivation

Enter, Hilbert

- Associate a free resolution to a finitely generated module

Motivation

Why do we desire an efficient free resolution construction?

Motivation

Why do we desire an efficient free resolution construction?

- Completely describe a module with the least* amount of information necessary

Motivation

Why do we desire an efficient free resolution construction?

- Completely describe a module with the least* amount of information necessary
- Given a minimal free resolutions, the information it contains is sufficient enough to compute other invariants of modules

Motivation

Why do we desire an efficient free resolution construction?

- Completely describe a module with the least* amount of information necessary
- Given a minimal free resolutions, the information it contains is sufficient enough to compute other invariants of modules
- Hilbert series
- Betti Numbers
- Ext, Tor and Hom functors

Preliminary Definitions

Let A, B, C be R-modules.
Definition
The pair of homomorphisms $A \xrightarrow{\psi} B \xrightarrow{\varphi} C$ is said to be exact (at
$B)$ if im $\psi=\operatorname{ker} \varphi$.

Preliminary Definitions

Let A, B, C be R-modules.

Definition

The pair of homomorphisms $A \xrightarrow{\psi} B \xrightarrow{\varphi} C$ is said to be exact (at $B)$ if im $\psi=\operatorname{ker} \varphi$.

Definition

A sequence $\ldots A_{n-1} \rightarrow A_{n} \rightarrow A_{n+1} \ldots$ of homomorphisms is said to be an exact sequence if it is exact at every A_{n} between a pair of homomorphisms.

Preliminary Definitions

Definition

Given a module M over a ring R, a free resolution of M is an exact sequence of free R-modules

$$
\ldots \xrightarrow{d_{n+1}} A_{n} \xrightarrow{d_{n}} \ldots \xrightarrow{d_{2}} A_{1} \xrightarrow{d_{1}} A_{0} \xrightarrow{\varepsilon} M \rightarrow 0
$$

where d_{i} are homomorphisms called differentials and ε is called the augmentation map

Finding a (close to) Minimal Resolution

The best case scenario: construct a minimal free resolution.

- A free resolution is minimal if and only if at each step we make an optimal choice, that is, we choose a minimal system of generators of the kernel in order to construct the next differential.
- A minimal free resolution is smallest in the sense that it lies (as a direct summand) inside any other free resolution of the module.

Finding a (close to) Minimal Resolution

How about close to minimal resolutions?

- Non-minimal free resolutions are easier to find
- But they yield less* information about the module we are resolving

Finding a (close to) Minimal Resolution

How about close to minimal resolutions?

- Non-minimal free resolutions are easier to find
- But they yield less* information about the module we are resolving

Two particularly " nice" resolutions that are close to minimal

- Taylor Resolution
- Lyubeznik Resolution

Preamble

Let K be a field and let $R=K\left[x_{0}, \ldots, x_{n}\right]$.
Let y_{1}, \ldots, y_{m} be m monomials in the x_{i}, with $\mathcal{I}=\left(y_{1}, \ldots, y_{m}\right)$, an ideal of R.

Preamble

Let K be a field and let $R=K\left[x_{0}, \ldots, x_{n}\right]$.
Let y_{1}, \ldots, y_{m} be m monomials in the x_{i}, with $\mathcal{I}=\left(y_{1}, \ldots, y_{m}\right)$, an ideal of R.

Some examples of monomial ideals;

- For $R=\mathbb{C}[x, y, z]$
- (x, y, z)
- $\left(x y, z^{2}\right)$
- $\left(x^{y} z^{3}, x\right)$

The Taylor Resolution

The Taylor Resolution of R / \mathcal{I} is given as
$0 \rightarrow R^{\binom{m}{m}} \rightarrow \ldots \rightarrow R^{\binom{m}{s}} \rightarrow R^{\binom{m}{s-1}} \rightarrow \ldots \rightarrow R^{\binom{m}{1}} \rightarrow R \rightarrow R / \mathcal{I} \rightarrow 0$
The differential; for $I=\left\{i_{1}, \ldots, i_{s}\right\}$,

$$
d\left(e_{l}\right)=\sum_{j=1}^{j=s}(-1)^{j+1} \frac{\operatorname{Icm}\left(y_{i_{1}}, \ldots, y_{i_{s}}\right)}{\operatorname{lcm}\left(y_{i_{1}}, \ldots, \hat{y_{j}}, \ldots y_{i_{s}}\right)} e_{\backslash \backslash i_{j}}
$$

The Taylor Resolution

Example: Let $R=K[a, b, c]$ and $\mathcal{I}=\left(a^{2}, a b, b^{3}\right)$. Then the Taylor resolution of R / \mathcal{I} is

$$
0 \rightarrow R \xrightarrow{\left(\begin{array}{c}
a \\
-1 \\
b^{2}
\end{array}\right)} R^{3} \xrightarrow{\left(\begin{array}{ccc}
0 & -b^{3} & -b \\
-b^{2} & 0 & a \\
a & a^{2} & 0
\end{array}\right)} R^{3} \xrightarrow{\left(\begin{array}{lll}
a^{2} & a b & b^{3}
\end{array}\right)} R \rightarrow R / \mathcal{I} \rightarrow 0
$$

The Taylor Resolution

Example: Let $R=K[a, b, c]$ and $\mathcal{I}=\left(a^{2}, a b, b^{3}\right)$. Then the Taylor resolution of R / \mathcal{I} is

$$
0 \rightarrow R \xrightarrow{\left(\begin{array}{c}
a \\
-1 \\
b^{2}
\end{array}\right)} R^{3} \xrightarrow{\left(\begin{array}{ccc}
0 & -b^{3} & -b \\
-b^{2} & 0 & a \\
a & a^{2} & 0
\end{array}\right)} R^{3} \xrightarrow{\left(\begin{array}{lll}
a^{2} & a b & b^{3}
\end{array}\right)} R \rightarrow R / \mathcal{I} \rightarrow 0
$$

Note that this is NOT a minimal resolution of \mathcal{I}.

The Taylor Resolution

Example: Let $R=K[a, b, c]$ and $\mathcal{I}=\left(a^{2}, a b, b^{3}\right)$. Then the Taylor resolution of R / \mathcal{I} is

$$
0 \rightarrow R \xrightarrow{\left(\begin{array}{c}
a \\
-1 \\
b^{2}
\end{array}\right)} R^{3} \xrightarrow{\left(\begin{array}{ccc}
0 & -b^{3} & -b \\
-b^{2} & 0 & a \\
a & a^{2} & 0
\end{array}\right)} R^{3} \xrightarrow{\left(\begin{array}{lll}
a^{2} & a b & b^{3}
\end{array}\right)} R \rightarrow R / \mathcal{I} \rightarrow 0
$$

Note that this is NOT a minimal resolution of \mathcal{I}.

The Lyubeznik Resolution

The Lyubeznik Resolution of R / \mathcal{I} is a subcomplex of the Taylor resolution, which is generated in homological desgree s by the basis elements $e_{i_{1}, \ldots, i_{s}}\left(1 \leq i_{1}<\ldots i_{s} \leq m\right)$ such that for every $t<s$, $q<i_{t}: y_{q} \nmid \operatorname{Icm}\left(y_{i_{t}}, \ldots, y_{i_{s}}\right)$.

The Lyubeznik Resolution

The Lyubeznik Resolution of R / \mathcal{I} is a subcomplex of the Taylor resolution, which is generated in homological desgree s by the basis elements $e_{i_{1}, \ldots, i_{s}}\left(1 \leq i_{1}<\ldots i_{s} \leq m\right)$ such that for every $t<s$, $q<i_{t}: y_{q} \backslash \operatorname{Icm}\left(y_{i_{t}}, \ldots, y_{i_{s}}\right)$.

The differential is the same as the Taylor resolution, as it is a subcomplex.

The Lyubeznik Resolution

The Lyubeznik Resolution of R / \mathcal{I} is a subcomplex of the Taylor resolution, which is generated in homological desgree s by the basis elements $e_{i_{1}, \ldots, i_{s}}\left(1 \leq i_{1}<\ldots i_{s} \leq m\right)$ such that for every $t<s$, $q<i_{t}: y_{q} \nmid \operatorname{lcm}\left(y_{i_{t}}, \ldots, y_{i_{s}}\right)$.

The differential is the same as the Taylor resolution, as it is a subcomplex. For $I=\left\{i_{1}, \ldots, i_{s}\right\}$,

$$
d\left(e_{l}\right)=\sum_{j=1}^{j=s}(-1)^{j+1} \frac{\operatorname{lcm}\left(y_{i_{1}}, \ldots, y_{i_{s}}\right)}{\operatorname{lcm}\left(y_{i_{1}}, \ldots, \hat{y_{j}}, \ldots y_{i_{s}}\right)} e_{\backslash \backslash i_{j}}
$$

The Lyubeznik Resolution

Example: Let $R=K[a, b, c]$ and $\mathcal{I}=\left(a^{2}, a b, b^{3}\right)$. Then the Lyubeznik resolution of R / \mathcal{I} is

$$
0 \rightarrow R^{2} \xrightarrow{\left(\begin{array}{cc}
a & -b^{2} \\
-b & 0 \\
0 & a
\end{array}\right)} R^{3} \xrightarrow{\left(\begin{array}{lll}
a b & a^{2} & b^{3}
\end{array}\right)} R \rightarrow R / \mathcal{I} \rightarrow 0
$$

Comparison

$$
\mathbf{T}: 0 \rightarrow R \xrightarrow{\left(\begin{array}{c}
a \\
-1 \\
b^{2}
\end{array}\right)} R^{3} \xrightarrow{\left(\begin{array}{ccc}
0 & -b^{3} & -b \\
-b^{2} & 0 & a \\
a & a^{2} & 0
\end{array}\right)} R^{3} \xrightarrow{\left(\begin{array}{lll}
a^{2} & a b & b^{3}
\end{array}\right)} R \rightarrow R / \mathcal{I} \rightarrow 0
$$

Rank; 8

$$
\mathbf{L}: 0 \rightarrow R^{2} \xrightarrow{\left(\begin{array}{cc}
a & -b^{2} \\
-b & 0 \\
0 & a
\end{array}\right)} R^{3} \xrightarrow{\left(\begin{array}{lll}
a b & a^{2} & b^{3}
\end{array}\right)} R \rightarrow R / \mathcal{I} \rightarrow 0
$$

Rank; 6

Comparison

$$
\mathbf{T}: 0 \rightarrow R \xrightarrow{\left(\begin{array}{c}
a \\
-1 \\
b^{2}
\end{array}\right)} R^{3} \xrightarrow{\left(\begin{array}{ccc}
0 & -b^{3} & -b \\
-b^{2} & 0 & a \\
a & a^{2} & 0
\end{array}\right)} R^{3} \xrightarrow{\left(\begin{array}{lll}
a^{2} & a b & b^{3}
\end{array}\right)} R \rightarrow R / \mathcal{I} \rightarrow 0
$$

Rank; 8

$$
\mathbf{L}: 0 \rightarrow R^{2} \xrightarrow{\left(\begin{array}{cc}
a & -b^{2} \\
-b & 0 \\
0 & a
\end{array}\right)} R^{3} \xrightarrow{\left(\begin{array}{lll}
a b & a^{2} & b^{3}
\end{array}\right)} R \rightarrow R / \mathcal{I} \rightarrow 0
$$

Rank; 6
Could this be minimal?

Comparison

Using Macaulay2, we can compute the minimal resolution.
i1 : $\mathrm{R}=\mathrm{QQ}[\mathrm{a}, \mathrm{b}]$
$01=R$
01 : PolynomialRing
i2 : I=ideal ($a^{\wedge} 2, a * b, b^{\wedge} 3$)
$02=\operatorname{ideal}\left({ }^{2}, a * b, b^{3}\right)$
02 : Ideal of R
i3 : C= res I
$03=R^{1}<--R^{3}<--R^{2}<--0$
o3 : ChainComplex
i4 : c.dd

$2: R^{2}<---0: 3$
04 : ChainComplexMap

References and Acknowledgements

- D. Dummit, R. Foote, Abstract Algebra, John Wiley and Sons Inc. 2004
- G. Fløystad, J. McCullough, I. Peeva, Three Themes of Syzygies, March 2016
- G. Lyubeznik, A New Explicit Finite Free Resolution of Ideals Generated by Monomials in an R-Sequence, J. Algebra 51 (1988) 193-195 North-Holland
- J. Mermin, Three Simplicial Resolutions

