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Why do we desire an efficient free resolution construction?

e Completely describe a module with the least* amount of
information necessary

e Given a minimal free resolutions, the information it contains is
sufficient enough to compute other invariants of modules

e Hilbert series
e Betti Numbers
e Ext, Tor and Hom functors
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Definition

A sequence ... A,—_1 = A, = Ant1 ... of homomorphisms is said
to be an exact sequence if it is exact at every A, between a pair

of homomorphisms.



Preliminary Definitions

Definition
Given a module M over a ring R, a free resolution of M is an

exact sequence of free R-modules
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where d; are homomorphisms called differentials and ¢ is called

the augmentation map



Finding a (close to) Minimal Resolution

The best case scenario: construct a minimal free resolution.

e A free resolution is minimal if and only if at each step we
make an optimal choice, that is, we choose a minimal system
of generators of the kernel in order to construct the next
differential.

e A minimal free resolution is smallest in the sense that it lies

(as a direct summand) inside any other free resolution of the
module.
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Finding a (close to) Minimal Resolution

How about close to minimal resolutions?

e Non-minimal free resolutions are easier to find

e But they yield less* information about the module we are
resolving

Two particularly "nice” resolutions that are close to minimal

e Taylor Resolution

e Lyubeznik Resolution
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Let K be a field and let R = K[xp, ..., Xs]

Let y1,...,¥Ym be m monomials in the x;, with Z = (y1, ..., ym),
an ideal of R.

Some examples of monomial ideals;

e For R=Clx,y, 7]

e (x,v,2)
o (xy,2%)
o (xV23,x)



The Taylor Resolution

The Taylor Resolution of R/ is given as

m
1
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The differential; for [ = {i,...,is},
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The Taylor Resolution

Example: Let R = KJa, b, c] and Z = (a°, ab, b3). Then the
Taylor resolution of R/Z is

a 0 —b3 —b
—1 —b% 0 a
b2 a a2 0 (32 ab b3)
0— R y R3 > R3 sy R — R/Z — 0
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Example: Let R = KJa, b, c] and Z = (a°, ab, b3). Then the
Taylor resolution of R/Z is

a 0 —-b> —b
—1 —b* 0 a
b? a o 0 (32 ab b3)
0— R y R3 > R3 sy R — R/Z — 0

Note that this is NOT a minimal resolution of Z.
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The Lyubeznik Resolution

The Lyubeznik Resolution of R/Z is a subcomplex of the Taylor
resolution, which is generated in homological desgree s by the basis

elements e; . ;i (1 < i1 <...is < m) such that for every t <s,
q < it yq flem(Yip, .-, Yi)-
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The differential is the same as the Taylor resolution, as it is a
subcomplex. For | = {i,...,is},
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The Lyubeznik Resolution

Example: Let R = KJa, b, c] and Z = (a2, ab, b). Then the
Lyubeznik resolution of R/Z is

a —b?
—b 0
0 a (ab a2 b3)
0 — R? > R3 yR— R/T —0

14



Comparison

a 0 —b3 —b
—1 —b? 0 a
b2 a &f 0 (a2 ab b3)
T:0— R > R3 > R3 y R — R/Z — 0
Rank: 8
a —b?
—b 0
0 a (ab a2 b3
L:0— R? > R’ R — R/T — 0
Rank:; 6
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a 0 —b3 —b
—1 —b? 0 a
b2 a &f 0 (a2 ab b3)
T:0— R > R3 > R3 y R — R/Z — 0
Rank: 8
a —b?
—b 0
0 a (ab a2 b3
L:0— R? > R’ R — R/T — 0
Rank:; 6

Could this be minimal?
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Comparison

Using Macaulay2, we can compute the minimal resolution.

: R=QQ[a,b]
R
: PolynomialRing
: I=ideal(a”2,a*b,b”3)

2 3
ideal (a , axb, b )

: Ideal of R
: C=res I

That’s familiar!

| a2 ab b3 |

{2} | -b o |
{2} | a -b2 |
|

: ChainComplexMap
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