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Motivation

• How can we describe the structure of a module?

• Generators

• Relations on the generators

• Relations on these relations on the generators

• . . .
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Motivation

Enter, Hilbert

• Associate a free resolution to a finitely generated module

. . .A2

d2=

✓
relations on
the relations

in d1

◆

�����������! A1

d1=
⇣
relations on the
generators of M

⌘

�������������! A0

⇣
generators

of M

⌘

��������! M ! 0
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Motivation

Why do we desire an e�cient free resolution construction?

• Completely describe a module with the least* amount of

information necessary

• Given a minimal free resolutions, the information it contains is
su�cient enough to compute other invariants of modules

• Hilbert series

• Betti Numbers

• Ext, Tor and Hom functors
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Preliminary Definitions

Let A,B ,C be R-modules.

Definition

The pair of homomorphisms A
 �! B

'�! C is said to be exact (at

B) if im  = ker'.

Definition
A sequence . . .An�1 ! An ! An+1 . . . of homomorphisms is said

to be an exact sequence if it is exact at every An between a pair

of homomorphisms.
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Preliminary Definitions

Definition
Given a module M over a ring R , a free resolution of M is an

exact sequence of free R-modules

. . .
dn+1��! An

dn�! . . .
d2�! A1

d1�! A0
"�! M �! 0

where di are homomorphisms called di↵erentials and " is called

the augmentation map
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Finding a (close to) Minimal Resolution

The best case scenario: construct a minimal free resolution.

• A free resolution is minimal if and only if at each step we

make an optimal choice, that is, we choose a minimal system

of generators of the kernel in order to construct the next

di↵erential.

• A minimal free resolution is smallest in the sense that it lies

(as a direct summand) inside any other free resolution of the

module.
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Finding a (close to) Minimal Resolution

How about close to minimal resolutions?

• Non-minimal free resolutions are easier to find

• But they yield less* information about the module we are

resolving

Two particularly ”nice” resolutions that are close to minimal

• Taylor Resolution

• Lyubeznik Resolution
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Preamble

Let K be a field and let R = K [x0, . . . , xn].

Let y1, . . . , ym be m monomials in the xi , with I = (y1, . . . , ym),

an ideal of R .

Some examples of monomial ideals;

• For R = C[x , y , z ]
• (x , y , z)

• (xy , z2)

• (xyz3, x)
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The Taylor Resolution

The Taylor Resolution of R/I is given as

0 ! R(
m
m) ! . . . ! R(

m
s ) ! R(

m
s�1) ! . . . ! R(

m
1) ! R ! R/I ! 0

The di↵erential; for I = {i1, . . . , is},

d(eI ) =
j=sX

j=1

(�1)j+1 lcm(yi1 , . . . , yis )

lcm(yi1 , . . . , ŷij , . . . yis )
eI\ij
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The Taylor Resolution

Example: Let R = K [a, b, c] and I = (a2, ab, b3). Then the

Taylor resolution of R/I is

0 ! R

0

BBB@

a

�1

b2

1

CCCA

�����! R3

0

BBB@

0 �b3 �b

�b2 0 a

a a2 0

1

CCCA

��������������! R3

⇣
a2 ab b3

⌘

����������! R ! R/I ! 0

Note that this is NOT a minimal resolution of I.
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The Lyubeznik Resolution

The Lyubeznik Resolution of R/I is a subcomplex of the Taylor

resolution, which is generated in homological desgree s by the basis

elements ei1,...,is (1  i1 < . . . is  m) such that for every t < s,

q < it : yq 6 | lcm(yit , . . . , yis ).

The di↵erential is the same as the Taylor resolution, as it is a

subcomplex. For I = {i1, . . . , is},

d(eI ) =
j=sX

j=1

(�1)j+1 lcm(yi1 , . . . , yis )
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The Lyubeznik Resolution

Example: Let R = K [a, b, c] and I = (a2, ab, b3). Then the

Lyubeznik resolution of R/I is

0 ! R2

0

BBB@
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�b 0

0 a

1
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���������! R3

⇣
ab a2 b3

⌘

����������! R ! R/I ! 0
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Comparison

T : 0 ! R

0

BBB@

a

�1

b2

1

CCCA

�����! R3

0

BBB@

0 �b3 �b

�b2 0 a

a a2 0

1

CCCA

��������������! R3

⇣
a2 ab b3

⌘

����������! R ! R/I ! 0

Rank; 8

L : 0 ! R2

0

BBB@

a �b2

�b 0

0 a

1

CCCA

���������! R3

⇣
ab a2 b3

⌘

����������! R ! R/I ! 0

Rank; 6

Could this be minimal?
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Comparison

Using Macaulay2, we can compute the minimal resolution.
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